home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
SGI Hot Mix 17
/
Hot Mix 17.iso
/
HM17_SGI
/
research
/
lib
/
fv_test.pro
< prev
next >
Wrap
Text File
|
1997-07-08
|
4KB
|
154 lines
;$Id: fv_test.pro,v 1.4 1997/01/15 03:11:50 ali Exp $
;
; Copyright (c) 1994-1997, Research Systems, Inc. All rights reserved.
; Unauthorized reproduction prohibited.
;+
; NAME:
; FV_TEST
;
; PURPOSE:
; This function computes the F-statistic and the probability that two
; vectors of sampled data have significantly different variances. This
; type of test is often refered to as the F-variances Test.
;
; CATEGORY:
; Statistics.
;
; CALLING SEQUENCE:
; Result = FV_TEST(X, Y)
;
; INPUTS:
; X: An n-element vector of type integer, float or double.
;
; Y: An m-element vector of type integer, float or double.
;
; EXAMPLE
; Define two n-element vectors of tabulated data.
; X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, 305, $
; 270, 260, 251, 275, 288, 242, 304, 267]
; Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, 271, $
; 214, 216, 175, 192, 208, 150, 281, 196]
; Compute the F-statistic (of X and Y) and its significance.
; The result should be the two-element vector [2.48578, 0.0540116],
; indicating that X and Y have significantly different variances.
; result = fv_test(X, Y)
;
; PROCEDURE:
; FV_TEST computes the F-statistic of X and Y as the ratio of variances
; and its significance. X and Y may be of different lengths. The result
; is a two-element vector containing the F-statistic and its
; significance. The significance is a value in the interval [0.0, 1.0];
; a small value (0.05 or 0.01) indicates that X and Y have significantly
; different variances.
;
; REFERENCE:
; Numerical Recipes, The Art of Scientific Computing (Second Edition)
; Cambridge University Press
; ISBN 0-521-43108-5
;
; MODIFICATION HISTORY:
; Written by: GGS, RSI, Aug 1994
; FV_TEST is based on the routine: ftest.c described in
; section 14.2 of Numerical Recipes, The Art of Scientific
; Computing (Second Edition), and is used by permission.
;-
function betacf, a, b, x
on_error, 2
eps = 3.0e-7
fpmin = 1.0e-30
maxit = 100
qab = a + b
qap = a + 1.0
qam = a - 1.0
c = 1.0
d = 1.0 - qab * x / qap
if(abs(d) lt fpmin) then d = fpmin
d = 1.0 / d
h = d
for m = 1, maxit do begin
m2 = 2 * m
aa = m * (b - m) * x / ((qam + m2) * (a + m2))
d = 1.0 + aa*d
if(abs(d) lt fpmin) then d = fpmin
c = 1.0 + aa / c
if(abs(c) lt fpmin) then c = fpmin
d = 1.0 / d
h = h * d * c
aa = -(a + m) *(qab + m) * x/((a + m2) * (qap + m2))
d = 1.0 + aa * d
if(abs(d) lt fpmin) then d = fpmin
c = 1.0 + aa / c
if(abs(c) lt fpmin) then c = fpmin
d = 1.0 / d
del = d * c
h = h * del
if(abs(del - 1.0) lt eps) then return, h
endfor
message, 'Failed to converge within given parameters.'
end
function gammln, xx
coff = [76.18009172947146d0, -86.50532032941677d0, $
24.01409824083091d0, -1.231739572450155d0, $
0.1208650973866179d-2, -0.5395239384953d-5]
stp = 2.5066282746310005d0
x = xx
y = x
tmp = x + 5.5d0
tmp = (x + 0.5d0) * alog(tmp) - tmp
ser = 1.000000000190015d0
for j = 0, n_elements(coff)-1 do begin
y = y + 1.d0
ser = ser + coff[j] / y
endfor
return, tmp + alog(stp * ser / x)
end
function ibeta, a, b, x
on_error, 2
if (x lt 0 or x gt 1) then message, $
'x must be in the interval [0, 1].'
if (x eq 0 or x eq 1) then bt = 0.0 $
else $
bt = exp(gammln(a + b) - gammln(a) - gammln(b) + $
a * alog(x) + b * alog(1.0 - x))
if(x lt (a + 1.0)/(a + b + 2.0)) then return, $
bt * betacf(a, b, x) / a $
else return, 1.0 - bt * betacf(b, a, 1.0-x) / b
end
function fv_test, x0, x1
on_error, 2
nx0 = n_elements(x0)
nx1 = n_elements(x1)
if nx0 le 1 or nx1 le 1 then $
message, 'x0 and x1 must be vectors of length greater than one.'
type = size(x0)
mv0 = moment(x0)
mv1 = moment(x1)
if mv0[1] gt mv1[1] then begin
f = mv0[1] / mv1[1]
df0 = nx0 - 1
df1 = nx1 - 1
endif else begin
f = mv1[1] / mv0[1]
df0 = nx1 - 1
df1 = nx0 - 1
endelse
prob = 2.0 * ibeta(0.5*df1, 0.5*df0, df1/(df1+df0*f))
if type[2] ne 5 then prob = float(prob)
if prob gt 1 then return, [f, 2.0 - prob] $
else return, [f, prob]
end